The EE75 series air velocity transmitters were developed to obtain accurate measuring results over a wide range of velocities and temperatures. A high-quality hot film sensor element based on cutting-edge thin film technology ensures maximum sensitivity, even at lowest mass flows. At the same time, the innovative probe design produces reliable measuring results at high flow velocities of up to 40 m/s (8000 ft/min).

The integrated temperature compensation minimises the temperature cross-sensitivity of the EE75 series which, combined with the robust mechanical design, allows it to be used at process temperatures between -40 to +120°C (-40 to 248°F).

In addition to air velocity and temperature values, the transmitter calculates the volumetric flow rate in m³/h or ft³/min. The cross section of the duct needs to be determined for this purpose and the volumetric flow rate can be displayed and directed to one of the further measurands.

The configuration software included in the scope of supply allows to choose the appropriate output parameter and freely scale the display range and signal level of the two analogue outputs. In addition user-friendly calibration of the air velocity and temperature and the adjustment of key parameters (e.g. response time of the velocity measurement, low flow cut-off points, etc.) are supported as well.

An optional illuminated display with two control buttons integrated in the cover is available. In addition, this enables changes of the configuration to be made directly on the unit.

The EE75 series has a robust metal housing to protect against possible damage in rough industrial environments. There are five different models, providing a comprehensive range of mounting options:

- **Model A** for wall mounting
- **Model B** for duct mounting
- **Model C** with remote probe
- **Model E** with remote probe, pressure-tight up to 10 bar (145psi)
- **Model P** for duct mounting, pressure-tight up to 10 bar (145psi)

The EE75 series can be used to measure the velocity of other gases as well, although a correction has to be applied to the unit at the factory.

Typical Applications

- monitoring incoming and outgoing air (energy management) in HVAC applications
- filter monitoring and laminar flow control in cleanrooms
- exhaust systems, exhaust hoods and glove boxes in the pharmaceutical, bio and semiconductor industries
- mass flow measurement during incineration processes
- monitoring and measurement of compressed air systems
- air conveying systems
- wind tunnels and climate simulators

Features

- high accuracy
- working range 0...40 m/s (0...8000 ft/min) and -40...120°C (-40...248°F)
- measurement of air velocity and temperature
- calculation of volumetric flow rate
- low dependence of angle of inflow
- probe diameter 8mm (0.3”)
- remote probe up to 10m (32.8ft)
- easy mounting and maintenance
- correction for pressure, humidity and media
- low flow cut-off
- SI and US units selectable
Technical Data

Measuring value

Air velocity

<table>
<thead>
<tr>
<th>Working range</th>
<th>0... 2m/s (0...400ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0...10m/s (0...2000ft/min)</td>
</tr>
<tr>
<td></td>
<td>0...40m/s (0...8000ft/min)</td>
</tr>
</tbody>
</table>

Accuracy in air at 25°C (77°F)

<table>
<thead>
<tr>
<th>0... 2m/s (0...400ft/min)</th>
<th>± (0.05m/s / 10ft/min + 0.5% of measuring value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...10m/s (0...2000ft/min)</td>
<td>± (0.10m/s / 20ft/min + 2% of measuring value)</td>
</tr>
<tr>
<td>0...40m/s (0...8000ft/min)</td>
<td>± (0.20m/s / 40ft/min + 2% of measuring value)</td>
</tr>
</tbody>
</table>

Temperature dependence of electronics

- v: typ. -0.005% of measuring value / °C
- T: typ. -0.01°C / °C

Dependence

- of angle of inflow: < 3% for $\alpha < 20^\circ$
- of direction of inflow: < 3%

Response time τ_{90}

< 1.5...40s (configurable)

Temperature

Working range

- probe: -40...120°C (-40...248°F)
- probe cable: -40...105°C (-40...221°F)
- electronic: -40...60°C (-40...140°F)
- electronic with display: -30...60°C (-22...140°F)

Accuracy at 20°C (68°F)

±0.5°C (±0.9°F)

Response time τ_{90}

10s

Outputs

Output signals and display ranges are freely scaleable (see ranges below)

- voltage: 0-10V (e.g. 0-5V, 1-5V etc.)
- current (3-wire): 0-20mA (e.g. 4-20mA etc.)
- v-scaling: 0...2 / 10 / 40m/s (0...400 / 2000 / 8000ft/min)
- T-scaling: -40...120°C (-40...248°F)
- Vol-scaling: 0...1000m³/h (0...588 ft³/min)

General

Supply voltage

24V DC/AC ± 20%

Current consumption

max. 100mA; max. 160mA (with display)

Connection

screw terminals max. 1.5mm² (AWG 16)

Electromagnetic compatibility

EN 61000-6-3 ICES-003 ClassB
EN 61000-6-2 FCC Part15 ClassB

Pressure range

Model E and P pressure tight up to 10 bar (145psi)

Material

- housing / protection class: metal (AlSi3Cu) / IP65
- measuring probe: stainless steel
- measuring head: PBT (polybutylenterephthalat)

System requirements

for configuration software: Windows 2000 or Windows XP

Interface

USB 1.1

1) accuracy refers to measurement in air

2) Response time τ_{90} is measured from the beginning of a step change of air velocity to the moment of reaching 90% of the step.

Configuration Software

An easy setup of the EE75 can be made via USB interface using the USB cable included in the scope of supply.

The user can set the response time, correct for the gas (air) pressure and perform an one or two point adjustment of the EE75 in the filed.

Furthermore, the user can input the area of the duct cross section and get on the analogue output of EE75 the reading of the volumetric flow.

EE75

84
Angular Dependence

The innovative design of the probe head minimises the effect of the angle of inflow on the measuring result. The deviation of the measuring value remains < 3% up to an angle of inflow (alpha) of ± 20° between the direction of inflow and the sensor element's longitudinal axis.

Low flow cut-off

Small temperature differences in shut-off pipes and ducts can cause minimal flows. Even these would be detected and measured by the EE75. The resulting fluctuations in the output signal can be suppressed by the integrated low flow cut-off. The cut-off point and switching on hysteresis can be specified using the configuration software.

Calculation of volumetric flow

The EE75 measures air velocity in m/s or ft/min. The configuration software can be used to enter the cross-section. This enables the transmitter to calculate the volumetric flow rate in m³/h or ft³/min. The data can be displayed and directed to one of the analogue outputs.

Connection versions

- **standard**
 - M16x1.5

- **plug option C12**
 - Lumberg RSC 5/7
 - power supply + analogue output

- **plug option C13**
 - Lumberg RSC 5/7
 - power supply + USB

Connection Diagram
Dimensions in mm

EE75-VTA
Wall mounting

EE75-VTB
Duct mounting

cable length: refer to ordering guide

code “probe length”

EE75-VTP
Pressure tight duct mounting up to 10 bar (145psi)

cable length: refer to ordering guide

1/2” ISO or 1/2” NPT

EE75-VTC
Remote probe

cable length: refer to ordering guide

EE75-VTE
Remote, pressure tight probe up to 10 bar (145psi)

1/2” ISO or 1/2” NPT

code “probe length”
Ordering Guide

Hardware Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EE75-VTA</th>
<th>EE75-VTB</th>
<th>EE75-VTC</th>
<th>EE75-VTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0...10V</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4...20mA</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Working range</td>
<td>0...2m/s (0...400ft/min)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0...10m/s (0...2000ft/min)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0...40m/s (0...8000ft/min)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Probe length</td>
<td>200mm (7.9")</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>400mm (15.8")</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>600mm (23.6")</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Cable length</td>
<td>2m (6.6ft)</td>
<td>K200</td>
<td>K200</td>
<td>K1000</td>
</tr>
<tr>
<td></td>
<td>5m (16.4ft)</td>
<td>K500</td>
<td>K500</td>
<td>HA07</td>
</tr>
<tr>
<td>Display</td>
<td>without display</td>
<td>D06</td>
<td>D06</td>
<td>D06</td>
</tr>
<tr>
<td></td>
<td>with display</td>
<td>HA03</td>
<td>HA03</td>
<td>HA03</td>
</tr>
<tr>
<td>Pressure tight</td>
<td>1/2" ISO thread</td>
<td>HA03</td>
<td>HA03</td>
<td>HA03</td>
</tr>
<tr>
<td></td>
<td>1/2" NPT thread</td>
<td>HA07</td>
<td>HA07</td>
<td>HA07</td>
</tr>
<tr>
<td>Plug</td>
<td>cable glands</td>
<td>C12</td>
<td>C12</td>
<td>C12</td>
</tr>
<tr>
<td></td>
<td>1 plug for power supply and outputs</td>
<td>C12</td>
<td>C12</td>
<td>C12</td>
</tr>
<tr>
<td></td>
<td>2 plug for power supply / outputs and USB</td>
<td>C13</td>
<td>C13</td>
<td>C13</td>
</tr>
</tbody>
</table>

Software Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>output 1</th>
<th>output 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical parameters of outputs</td>
<td>T [°C] (B)</td>
<td>v [m/s] (N)</td>
</tr>
<tr>
<td>Temperature</td>
<td>metric / SI</td>
<td>E01</td>
</tr>
<tr>
<td></td>
<td>non metric / US</td>
<td>E01</td>
</tr>
<tr>
<td>Velocity</td>
<td>T [°C] (B)</td>
<td>v [m/s] (N)</td>
</tr>
<tr>
<td></td>
<td>-40...60</td>
<td>(T02)</td>
</tr>
<tr>
<td></td>
<td>-10...50</td>
<td>(T03)</td>
</tr>
<tr>
<td></td>
<td>0...50</td>
<td>(T04)</td>
</tr>
<tr>
<td></td>
<td>0...100</td>
<td>(T05)</td>
</tr>
<tr>
<td></td>
<td>-10...60</td>
<td>(T06)</td>
</tr>
<tr>
<td></td>
<td>-20...60</td>
<td>(T07)</td>
</tr>
<tr>
<td>Volume</td>
<td>T [°C] (B)</td>
<td>V [m³/min] (O)</td>
</tr>
<tr>
<td></td>
<td>-40...120</td>
<td>(T12)</td>
</tr>
<tr>
<td></td>
<td>-20...120</td>
<td>(T10)</td>
</tr>
<tr>
<td></td>
<td>-30...120</td>
<td>(T09)</td>
</tr>
<tr>
<td>Measurement media</td>
<td>Air</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Carbon dioxide</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>C</td>
</tr>
</tbody>
</table>

Order Example

EE75-VTB325C12/BN-T07

Model: duct mounting
Output: 0...10V
Working range: 0...10m/s (0...2000ft/min)
Probe length: 200mm (7.9")
Display: without
Plug: 1 plug for power supply and outputs
Output 1: T
Output 2: v
Measured value units: metric / SI
T-Scaling: 0...60°C
Measurement media: Air